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> decide now many components are in the mixture, a difficult multipie gecision

problem. — 3

.

In the statistical‘iitecqpure, saveral nhypothesis testing variety of

¢riteria have been proposed for thi ~pyrpose. However, all these criteria
\
possess sampling distriputional problemsz Wnat the null distribution of the

¢riterion is if tne data actually contain k clusters is not known, ana remains

o e

largely unresolved still. B
> Two well xnown model-selection criteria, namely Akaike's Information

Criterion (AIC) and Schwarz's Criterion are proposed for tne first time as two

new approaches to the problem of what the appropriate choice of k in the mix- V

ture multinormal model should be. The forms of these two mogel-selection

¢riteria are obtained in the standard multivariate normal mixture model.

Analyses are carried out on the same data set by applying the model-sefection :

—

criteria for different choices of k using thg’gﬂx&arE’ET§6F;ihm under two ?{
assumptions with common cpvariaﬁééfhifrkces between the component normals, and ; 
witn varying covazjah;e matrices in determining the appropriate number of

types or clusters?J The results are obtained when data initialiy partitioned
into equal size groups; when data initially reorderaed; when data initialized

by k-means algorithm; when data initialized by special initialization scheme;

and when special initialization scheme is used on reordered data.
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DETERMINING THE NUMBER OF COMPOMENT CLUSTERS IN i
THE STANDARD MULTIVARIATE NORMAL MIXTURE MODEL H
USING MODEL-SELECTION CRITERIA* . 5

HAMPARSUM BOZDOGAN
Department of Quantitative Methods
University of Il1linois at Chicago i

ABSTRACT i

The problem of clustering individuals is considered within the context of
a muitivariate normal mixture using model-selection criteria. Often, the
number k of components in the mixture is not known. In practical problems,
the question arises as to the appropriate choice of k. The problem is to
decide how many components are in the mixture, a difficult multiple decision
aroblem.

In the statistical literature, several hypothesis testing variety of
criteria have been proposed for this purpose. However, all these criteria
possess sampling distributional problems. wWhat the null distribution of the
criterion is if the data actually contain k clusters is not xnown, and remains
largely unresolved still,

Two well known model-selection criteria, namely Akaike's Information
Criterion (AIC) and Schwarz's Criterion are proposed for the first time as two
new approaches to the problem of what the appropriate choice of k in the mix-
ture multinormal model should be. The forms of these two model-selection
criteria are obtained in the standard multivariate normal mixture model.
Analyses are carried out on the same data set by applying the model-selection
criteria for different choices of k using the mixture algorithm under two l
assumptions with common covariance matrices between the component normals, and |
with varying covariance matrices in determining the appropriate number of i

tyoes or clusters. The results are obtained when data initially partitioned

into equal size groups; when data initially reordered; when data initializea
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by k-means algorithm; when data initialized by special initialization scheme;

and when special initialization scheme is used on reordered data.

Key Words and Phrases: Standard multivariate normal mixture model; Akaike's

Information Criterion (AIC); Schwarz's Criterion (SC).
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: DETERMINING THE NUMBER OF COMPONENT CLUSTERS
[N THE STANDARD MULTIVARIATE NORMAL MIXTURE
MODEL USING MODEL-SELECTION CRITERIA*

HAMPARSUM BOZDOGAN
University of Illinois at Chicago

1. Introduction

dhat is the most appropriate number of clusters for a set of data? How

do we decide the number of clusters present in the data? Which cluster or

i clusters do we choose? These are some fundamental gquestions confronting

practitioners and research workers in classification and clustering. The

| importance and the difficulty of this problem have been noted by many authors ;f
such as Beale (1969), Marriott (1971), Calinski and Harabasz (1974), Maronna E
and Jacovkis (1974), Matuéita and Ohsumi (1980), and others. For a good dis-
cussion on some of the test procedures used in deciding and determining the
number of clusters, we refer the reader to Milligan (1981), Dubes and Jain ?
(1979), and Everitt (1979, 1974).

[t is reasonable for an investigator to discover whether there is any
structure in the data, or whether they indicate just a singie cluster or
group. If there is only one graoup, that is, no cluster structure, then most
investigators would decide that clustering techniques were not needed. Dis-~
covering the structure in the data has its own practical importance. For
example, in studying medical and psychological syndromes; processing remotely
sense data for target identification or for predicting crop yields; in prob- 1

tems of taxonomy; and in many other applications we might want to find out

whether the observations fall into natural groups or not. If they do, then we

mignt w~ant to discover now many groups or clusters there might be, and how do

we identify and interpret them?

In the litarature, numerous attempts have been made to devise reasonable

*Presented at the Fourteenth Annual Meeting of the Classification ,
Saciety {(North American 3ranch), Philadelphia, PA, May 29-31, 1983. ¥
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indicators for the problem of choosing the number of clusters present, identi-
fication and interpretation of clustering results by many investigators. Stil}
today, however, there is no satisfactory solution and a unified flexible
approach, The major difficuities with deriving formal significance tests
similar to those of ordinary "t" and "F" test statistics in cluster analysis,
appear to be the difficulty of determining the sampling distribution of the
proposed test statistic [Everitt (1979)]. The problem of deriving a sampling
distribution is formidable, and the choice of a fixed level of significance for
comparison of different number of clusters with various number of parameters is
wrong since this does not take into account the increase of the variability of
the estimates when the number of parameters is increased. Therefore, the
theoretical difficulties faced in deriving sampling distribution of a proposed
test statistic, in the context of cluster analysis, are rather involved and not
practical. This point has been advocated by Gnanadesikan and Wilk {1969), and
others in the literature.

This suggests that, if we use the formal signficance test type indicators
or statistics in conjunction with the clustering algorithms or techniques,
then we must devise a criterion (or criterions) wnich will combine both the
estimation problem and the testing together to decide on the number of
clusters present in a data set.

Therefore, in tnis paper we shall propose and astablisn two theoretically-
basad procedures in deciding and determining the number of clustars present,
identifying the hest clustering alternative or altarnatives. We shall achieve
this Jy introducing two well xnown model-salection ¢riteria, namely, Akaike's
information Criterion (AIC), and its derivative, Schwarz' Criterion (SC' as “wo

rew and unifying pracedures,

Thus, “he main focus of this oaper ~ill He to show how ts use these
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two model-selection criteria in deciding and determining the number of
component clusters present in the standard multivariate normal mixture model
without «nowing a priori classification of the observations.

In Section 2, we shall discuss the standard multivariate normal mixture
model and the clustering criteria used under this model, namely, the maximum
likelihood approach. In Section 3, we shall discuss and review the use of
fitting the mixture model to determine the number of component clusters, and
its corresponding unresolved problems. We shall, in Section 4, present the two
model-selection criteria, and list their important general characteristics. In
Section 5, we shall give the forms of the model-selection criteria to be used
in standard normal mixture model approach to clustering. We shall apply thesa
two model-selection criteria in Section 6 in deciding and identifying the num-
ber of components or clusters present in the Fisher iris data and present the
numerical results. Finally, in Section 7, we shall present conclusions and

discussion.

2. The Standard Multivariate Normal Mixture Model

2.1. The Model

As has been suggested before [see, e.g., Fleiss and Zubin (1969)], often
when we consider clustering problems it seems relevant and logical to consider
the sample as arising from several different populations rather than a single
population since the individuals within a class or group differ from one
another. That is, each individual in the sample is assumed to have come from
ane of several populations (types).

Given a sample from the overall mixed population, or assuming that the
sample nas come from a mixture population, the problem from a clustering view-

point is to determine and describe the number of subpopulations or groups, the
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parameters of the distribution characterizing each subpopulation or group, and
which group each individual belongs to.

Therefore, the problem of clustering individuals, objects, or cases, to be
considered here, will be studied within the context of a mixture of multi-
variate normal distributions.

More specifically, we shall consider a multivariate normal mixture model,

(2.1.1)  f(X) = F(X;T,u,5) =

" kak(Z;gk.gk)

1

no-Ix

where 7 = (Hl,nz,...,nK_l) are K - 1 independent mixing proporr - and are

such that

T s

e T

o

k=1

and where fy(X;u ,Z ) is the k-th component multivariate normal density, given
k k

by

-1/2

(2.1.2)  f, (Kswog,) = (2 P2, | X -y )

exp{-1/2(X - u,)

The model given by the p.d.f. in (2.1.1) is called the standard multi-
variate normal mixture model to distinguish it from the modified conditional
mixture model considered by Symons (1981), Sclove (1977,1982), Scott and Symons
(1971), and John (1970},

In the statistical literature, several authors, including Wolfe (1970},
Jay (1969), 3inder {1978}, Hartigan (1977), and others, have considered clus-

taring problems in which a standard mixture of multivariate normals is used as

a statistical model given by (2.1.1).
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2.2. Clustering Criteria: The Maximum Likelihood Approach

Wolfe (1970) has considered clustering based on the standard normal mix-
ture model. He uses the maximum likelinood (ML) approach to estimate the

mixing proportions I, , the mean vector u, and the covariance matrices L~ The

k’ k
maximum likelihood estimators (MLE's) nave well known desirable properties and
it is natural to consider the ML approach for estimating the parameters in a

mixture of multivariate normal distributions. To estimate the parameters the

likelihood of the data is required which is given by

n K
(2.2.1) L(Xjo) = E { Zl ﬂkfk(x )}

=1 ek

or the log of the likelihood is

n
= = ) C M
(2.2.2) 1 =z logeL(_JQ) L 1oge{kz1 “:'k(fi’gk’zk)} .

[t is the likelihood in (2.2.1) or the log likelihood in (2.2.2) that is

maximized with respect to 9 = (nl,n nk,91,32,-..,gkagl,gz,...,zk), the

greees
vector of parameters, by Wolfe (1970) and Day (1969). The maximum likelihood

equations are obtained by equating the first partial derivatives of (2.2.2) witn

respect to the I the elements of each vector Ly s and those of each matrix ;k’

k)
to zero. These equations are solved iteratively by a modified Newton-Raphson

method., The iterative MLE's are given by

R n
(2.2.3) 1, =% _31 Blxox.) 0=1,2,...,%-1
1=
. ) . -
(2.2.4) gt D% PO kel2, K
Koame 137 -
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the mixing proportion for type or cluster k,

K
T vector of means for cluster X,
Ek = covariance matrix for cluster X,

X. = vector of observations for the i-th point in the
sample, and

0 Fi (X5 gLy )

P(k[X;) = —= ——— = posterior probability of
= ) nf, (X5 woL,) group membership of X. in
k=1 cluster k. -

[f the clusters have a common covariance matrix, then we use
2.2.6 ;=L
(2.2.6) L=
Since the iterative process is used to solve the equations, actually,

several sets of values may satisfy the equations, and the results may depend on

<he initial values for the iteration process. Since mixture analvsis attamots

to find maximum-likelihood estimates of the parameters, the pest solution for

Qur Jurposes is the one with the greatest likelihood, or the greatest log lixe-

lihood.

Once the MLE's are «nown, we can regard each distridbution as indicating a

separate cluster, and individuals are then assigned dy the 3ayes allocation




-7

§ rule, That is, assign Xi to the «-th distribution when ;
i ~ |
\ h . - . - |
(2.2.7) T (X suyHE) € M F(Xgsme2, ) for all 1+ &k,

This process is repeated, increasing the log likelihood at each stage, until no

further reallocation of the X's occurs. Another way to put it, individual i is
assigned to that component (or group) k for which the estimated posterior
probability of group membership, ;(klfi)' is largest. Therefore, for a parti-
cular individual i, the optimal {D(klfi)} will be P(k[éi) = 1 when the indivi-
dual i is from component (or group) k and zero otherwise.

[t should be noted here that, this is one of the points where the standard

normal mixture model considered here, differs from that of the conditional mix-

ture model., That is, in the conditional mixture model, the individual i is

assigned to group k for which the estimated density is largest rather than the

estimated posterior probability of group membership which happens to be the case

in the standard n.rmal mixture model. For more details on this, refer to Sclove

(1979).

3. Fitting the Mixture Model to Determine the Number of Component Clusters: !
Unresolved Problems '

As we mentioned in Section 1, we may want to ask wnether there really is a
mixture or wnether there is just a single underlying component cluster. In
practice, this could be the sort of guestion we might be interested in since p
fitting the standard normal mixture model %o determine the aumber of component j
clustars has many practical importance and use. For example, we may want to
detarmine the number of disease types in the study »f disease pattarns, the

2l00d oressure <ypes, ind psychiatric disorder *ypes. In reliability analysis, !
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we may want to determine the number of laser types on tne bdasis of mean laser
life, Lasers are employed in telephone communication systems in which coherent
laser light is used to transmit telephone communications. [n image process-
ing, we may want to determine the number of classes of segments, etc.

As it was noted by Sokal (1977), the problems of inference on the number
of clusters "actually" present in a set of data, and of testing for model fit,
have not yet received much successful attention but more and more are recog-
nized as important.

Thus, the standard mixture problem will be to decide how many component
clusters are in the mixture, a difficult multiple decision problem. A simpler
problem is to decide whether k=r or k=r+l1 component clusters are necessary.

In practice, it is common to specify a larger hypothesized number of clusters,
say k, and creata sequence of k=1,2,...,K component clusters hy using the mix-
ture algorithm,

In the literature, several methods have been proposed in determining the
number of component clusters when the technique of fitting standard normal
mixture model! is used. One type of these techniques are informa! graphical
techniques, and the other type is more formal hypothesis testing variety of
technigue. .

dnen the technique of fitting mixture of distributions is used as a
clustering technique, likelihood ratio test is a more natural criterion for
testing the number of component clusters or groups in this context, However,
as we shall see, it has its thorny problems,

et L.< denota the maximized likelihood, for given x. Then

D
r—
—
-
"
!_
—

T e
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is the likelihood ratio statistic for testing k clusters against k' clusters
(k < k'), From a Monte Carlo investigation, Wolfe (1971) arrived at and
suggested an adjusted likelihood ratio test in which the statistic (not count-

ing the mixing proportions):
1 k' 2 .
(3.2) -2 . F'(" -1-p- ?—01ogex ~ X ¢ (chi-square)

with degrees of freedom f = 2p(k' - k), where

n = sample size,

p = number of variables,

k = number of component types in the null hypothesis,

k' = number of component types in the alternative hypothesis.

After performing a small scale simulation study, Wolfe (1971) on the
basis of the results recommended using the modified likelihood ratio test given
in (3.2) for k=1 against k=2, when under the alternative hypothesis the two
components are>assumed to have the same variance-covariance matrix. But,
Wolfe's simulation results suggest that even in reasonably large sample sizes,
the statistic in (3.2) does not appear to be asymptotically the usual chi-
square. In Wolfe's simulation, some of the sample means and variances are
quita different from those corresponding to the stipulated chi-square distribu-
tions. Also, the same results may not be true when under the alternative
nypotnesis the two components are assumed to have different variance-covariarce
matrices. Moreover, it is important to note that in the standard mixture prob-
lem, the likelihood functinn is a different function for Aifferent values of &,
whera k=1,2,.,..X. Therefore, in the context of the standard mixture model, “he

Juestion that arises, and that remains largely unresolved still, is what the
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asymptotic null distribution is if the data actually contain k=1,2,...,K
clusters.
Others in the statistical literature, have also cited the distributional
problems of the likelihood ratio test statistic in the mixture problem, For
example, Hartigan (1977) speculated that the log likelihood ratio lies between

Zp and % x2p+1, where p is the number of variables. B3inder (1978), on the

1
2‘1(
other hand, argues that the likelihood ratio criterion given in (3.2) is not
necessarily asymptotically chi-square distributed since

HO: n=1

(3.3)

H1: 0<m <1,

Here, under the null hypothesis, T, the mixing proportion, is on the boundary of
the parameter space, and the likelihood ratin criterion takes the value zero
when ﬁ, the maximum Tikelihood estimate for I, is 1 with probabi]ity-% , and
therefore, under the null hypothesis, the likelihood ratio criterion cannot be
asymptotically yZ2.

Benboodian (1972), shows that as the component densities become closer
and closer to each other, the information matrix approaches a singular matrix
#ith some diagonal elements equal to zero. The same thing happens when the
mixing parameter T tends to one or zero. Consequently, Behboodian concludes
that for estimating the parameters in a mixture where two component clustars are
well separated, or wnich has a mixing proportion close to zero, very large
samples may bYe needed. For example, for a fixed total sample size n, when we
run the mixture algorithm for a very large hypothesized number of clusters ¥,
tne mixing proportion I starts tending to zero. To put it in arother way, as X,

tne desired total number of component clusters, gets larger and larger for a
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fixed sample size n, then the mixing proportion T tends to zerd. Thus zausing
tne information matrix to be singular, For this reason, we need very large
samples to fit the standard normal mixture model to ensure that the component
sample sizes are large enough so that the information matrix will not become
singular.,

This point raises another important gquestinn as to what the appropriate
hypothesized number of component clusters X should be for a fixea sample size
n to fit the mixture model, In the literature, this point has never been
studied before, and certainly deserves more attention which will be a subject

of futher study later.

A rule of thumb, however, is to use K~(n/2)1/2 suggested by Mardia, et.
al. (1979), where K is the total hypothesized number of component clusters,

and n is the total sample size.

In reviewing the literature further, we see that some simulation results
of Everitt (1981) show that the suggestion of Wolfe (1971) seems reasonable
only in cases where n>10p. That is, the sample size n is of order 10p, where
o fs the number of variables, for testing one standard normal mixture model
against only two standard normal mixture models when the two components are
assumed to have the same variance-covariance matrix. According %o Everitt's
targe scale simulation results, Hartigan's (1977} conjecture does not seem %o
Je correct, However, at this point, Everitt's results cannot “e extenden to
e true for testing two standard normal mixture models against three, “hree
1gainst four, four against five, and so forth, since there do0es not axist any

~23sgnable Monte Carlo validation of the significance tasting procadure given

iq 13,2),

Utilizing estabiisned resul%s in the literature on the disirihytion

: 12 ”

. s
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of the log likelihood ratio test statistic wnen the true parameter is "near"
the boundaries of the hypothesis regions, we can reflect the key distribu-

tional requirements of the model.

Following Feder (1968), we state that, when the data can be represented
by n independent random variables with identical distributions depending on

the parameters (el,ez,...,ek) then the limiting distribution (as ns=) of

il a4 =25 o L0 i, YA T 7 =7

(3.7) -21oge(Iikelihood ratio)

is, under certain sequences of alternative hypotheses converging to the null

hypothesis which appears to be the case in testing mixture models, a non-

central chi-squared distribution. This result is due also to Wald (1943). 6
According to this result, it seems that for the mixture problem the key E

distributional requirement for a test is

d. *2 ¥

(3.8) -2C(n,p,K)logexa: Xe (5) (noncentral chi-square) .
where
f = number of degrees of freedom, |
8 = noncentrality parameter, and
1 K . I
C(n,p,K) = ﬁ{n -1-p - 5) = correction factor,
)
n = sample size, }
o = number of variables, y
K = total number of components hypothesized in the mixture

model.

In the next section, that is, in Section 4, we shall introduce the two
w#ell xnown model selection criteria to be used to estimate x (k=1,2,...,€}, the
number of component clusters in the standard normal mixture model. First some

general explianations on model-selection criteria will be appropriate.

v
N




4. Model-Selection Criteria

In the literature, model selection or identification problems continues

to attract a great deal of interest among statisticians and other scientists.

The major effort in this respect has been channeled towards simple criteria

for choosing one of a set of competing models to describe a given data set.

Much of this interest has been stimulated by the fundamental work of Akaike

(1973) and by the appearance of an informatiaon criterion due to him, known as
Akaike's Information Criterion (AIC)., Therefore, one group of criteria we see
in the current statistical literature are based on Boltzmann's (1877) entropy
or the Kuliback's (1959) information, such as Akaike's Information Criterion,
The other main group of criteria are Bayesian. Among the Bayesian, in par-
ticular, here we shall consider only Schwarz' Criterion (SC}.

Next, we give the formal definitions and some of the important character-

istics of these two model-selection criteria,

4.1. Akaike's Information Criterion (AIC)

Suppose there are K alternative models ﬂk’ k=1,2,...X, represented by the
densities fl(-igl), fz(-!gz),...,f (cfQK) for the explanation of a random vec-
tor 5 and given n observations. In 1971, 3kaike first introduced an informa-
tion criterion, which has become known as Akaike's Information Criterion (AIC)
for the identification and comparison of statistical models among a class of

competing models with different number of parameters., It is Adefined hy
(1,1.1) AIC{k) = <2 Inrmax L{k)1 + 2m(k),

or sympolically is gefined by

4.1.2) AIC = -2 In(maximized likelinood)

+2 {number of parameters estimatad w~ithin
the model).
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In (4.1.1), L(k) is the likelihood when M is the model, max denotes its

K
maximum over the parameters, and m(k) is the number of independent parameters

when M;< is the model.
The statistic AIC(k), was obtained by Akaike (1973, 1974) with the aid of

an information theoretic interpretation of the method of maximum likelihood.
[t is a natural estimate of minus twice the expected log likelihood of the
model whose parameters are determined by the method of maximum likelihood.
The minused expected log likelihood is, except for an additive constant,
identical to the (generalized) entropy, or the "cross-entropy," which is a

measure of goodness of fit or closeness of the estimated, fitted, or predic-

tive model to the true model. From this point of view, when several competing
models are being compared or fitted, AIC(k) is a simple procedure which

measures the badness of fit or the discrepancy of the estimated model from the

true model when a set of data is given. The model chosen is the one which
minimizes AIC and is called the minimum AIC procedure. The first term in

(4.1.1) stands for the penalty of badness of fit when the maximum likelihood

estimators of the parameters of the model is used. The first term is also
Known a: the measure of inaccuracy [see, e.g., Stone (1982)]. The second term
in the definition of AIC, on the other hand, is interpreted as representing a
penalty that should be paid for increasing the number of parameters, or

compensation for the bias or increased unreliability in the first term due to

the increased number of parameters. The second term in AIC, is also known as
the complexitz of the selected model. If more parameters are used to describe
the data, it is natural to get a larger likelihood, possibly w«ithout improving
the goodness of fit, Thus, AIC avoids this spurious improvement of fit by

senaiizing the use of additional parameters. In this sense, the 1IC may bpe




regarded
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as an explicit formulation of principle of parsimony in model build-

the statistical literature, the interpretation of the second term in

AIC as a measure of the complexity of the model Mk’ corresponds to the

principle known as Occam's Razor, which emphasizes the desirability of select-

(1)

(i1)

IRERR

ing accurate and parsimonious models of reality. This principle is also
closely related to the principle in hypothesis testing which emphasizes the
desirability of considering “substantive” significance as opposed to statisti-
cal significance. For more details on this, we refer the reader to Hodges and
Lehmann (1954},

We now list some of the important characteristics of Akaike's Information

Criterion (AIC) as follows:

AIC is defined without specific refrerenca to *he true mode! F(-'@Z‘.
Thus, for any finitz number of parametric models, we may always con-
sider an extended model that will play the roll of f(-!QK). This
suggests that AIC can Se useful for the comparison of models which
are nonnested, i.e., the situation where conventional 1ng likelihood

ratio test is not applicable as mentioned by Akaike (1982},

The value of AIC decreases guickly as the number of parameters being
adjustad is increased and then increases almost linearly when fon
many redundant parameters are included in the model. For more on

tnis, refer to Akaike (1978), Smith and Spiegelnal<ar {1380),

According to AIC, inclusion of an additional parametar is appropriate
if Infmax L] increasas by one uni® ar more, i.e., if max L increasas

Sy 3 factor of 2 ar qore.

1IC zan nave positive or negative values depending an the situation.
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If we let L{x} = max L{(k) when Mk is the model, with, say k, number

of parameters, and L{k+1) = max L(k+1) when M is the model, with, |1

k+1

say k+1, number of parameters, and if L(k+1)/L{(k) > e, then AIC(k) is

positive. I[f L(k+l)/L(k) < e, then AIC(k) is negative.
(v) AIC does not require level of significance or table look-up.

{(vi) The relationship between the AIC and the conventional likelihood

ratio test statistic can be written as

(-2)1n K(HO;HI) = AIC(HO) - AIC(H,) - 2,

X

where the model H1 contains the model Hn as a restricted family of
distributions of H, and k denotes the degrees of freedom of the chi-

square distribution of the likelihood ratio test statistic.

4,2, Schwarz' Criterion (SC)

Schwarz (1978) proposed a model selection procedure which minimizes the

criterion,
(4.2.1) SC{k) = =2 In[max L{k)] + m(k)In(n),

where n is the number of independent observations, This criterion is shtained
by 3analyzing the behavior of the posterior probability of the model “k when

n grows to infinity under the assumption of some arhitrary positive a oriori

probability distributions oan the parameters, Therefore, this criterion is a

3ayesian criterion. For %this reason, we shall abbreviate it as SC, instead of

SIiC. Jne should note tnat, SC and AIC are gualitatively the same, Sut %hey
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are gquantitatively different from one another only in that the number of esti-

mated parameters is multiplied by I1n{(n), the natural logarithm of the sample

size,

We now list some of the important characteristics of Schwarz' Criterion

{SC) as follows:

i
i

(1) SC assumes a fixed penalty for guessing the wrong model.

(ii) For small sample sizes, SC favors lTower-dimensional models as

compared to AIC. However, depending on the nature of the priors on

[OEr

the parameters and the nature of the model fitted, Schwarz' approxi-
mation may fail in small samples. Nevertheless, for large sample

sizes it has its own advantages.

e e = g

(iii) According to Schwarz' Criterion (SC), an additional parameter will be
included if it increases 1n[max L) by an amount 1n(n)/2, that is, if

max L increases by a factor of ¥ n or more.

; (iv) Like AIC, SC can also have positive or negative values depending on

-

the situation., That is, if L(k+1)/L(k) > v n , then SC(k) is

| positive. On the other hand, if L(k+1)/L(k) </ n , then SC(k) is 5

negative.

fv) Also SC does not require level of significance or table look-up,

5. The Forms of Modei-Selection Criteria in Standard Normal Mixture Model

Jespite the recent development of the use of statistical methodoiogy and

nodel!s in many disciplines, it seems that in many situations the difficulty of

constructing an adequate nodel based on the available sample information is
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not fully recognized, Cluster analysis is a case in puint,

Recall that k denotes the number of clusters or compgnent ciusters,
Jsually k is permitted to vary: k=1,2,...,K, say. Each choice of « cor-
responds to a different model for the data. One has to estimate the
parameters, say , 9, of this model. Then one computes the likelihnods L(k),
k=1,2,...,K and is faced with the problem of comparing them. That is, in
classification and clustering we have the problems of identifying and dis-

covering the number of clusters present in the standard mixture model, without

L g A e e

any a priori information about the data.

Such problems of statistical model identification suggest the introduc-
tion and the application of practically useful and versatile, and yet theore- A
tically sound criteria of "fit" of models such as the ones we discussad in
Section 4.

We, next, give the forms of AIC and SC to be used in standard normal
mixture model approach to clustering.

For the standard mixture model, we first, consider our conjecture in
(3.8) and show the form of AIC under this conjecture by stating and proving

the following theorem.

d. '2 (

Theorem 5.1. If -21n 132 Xe (§)(non-central chi-square) with f = 2{M.m)

degrees of freedom, then

(5.1) AIC*(x) = -2CInfmax L(k)] + 3m(k),
]. ! K .
wnere C = = (n - 1l -p -5 y = correction factor,
k=1,2,...,< = number of component clusters, or types,
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m = m(k),
m{k) = kp + (k-1) + p(g+1) = number of parameters including the
- mixture praportions when covariances
are equal,
m(k) = kp + (k=1) + X p(g+1) = number af parameters including the
- mixture proportinns when covariances
are different hHetween clusters, and
M = m(K).
Proof. In general,
(5.2) -2nE[B(f;f)] = -2nElentropy) = & + m.

is the noncentrality

ij)’
the (kxk) Fisher information matrix, and m denotes here, the number of para-

2

= - P |
where E denotes the expected value, § n‘]kg gtrue'[g
{" stands for the Euclidean norm with respect to J = (J

parameter, "|

meters, We asserted in (3.8) that
(5.3) 210 A% 5 2 (s,

where f = 2(M-m) is the number of degrees of freedom, and &, is the noncen-

trality parameter. As is well known,
(5.4) -2CIn A = E[-2CTn AT = E[x 216)T = 8 + £ = 5 + 2(M-m).

Hence, solving {5.4) for 5, the noncentrality parameter, we have
{3.9) 5 = =2C1n A =2(M-m).

Vow substituting {5.5) into (5.2), we agbtain

w
.
[¥))
]
~n
3
m
ra
w
—
H
- >
[ —
N

5 +m

]

-2CTn X =2(Mem) + m

"

=2CTn \-2M + Im.

L e e
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Since

[EREIA
(5.7) In A = In oot = Tnlmax L(k) J-InMmax L(K)],

and since AIC astimates the quantity -2nEfR], tnhen from (5.R), we have
(5.8) AIC = -2C1n[max L(k)] + 3m - 2M + 2C1n{max L(X)]

For comparison purposes, it suffices to ignore the additive terms -2M and
2Cin[max L(K)]) in {5.8). Thus, for the standard mixture model AIC in (5.8)

takes the simple form

(5.9) AIC* (k)

-2CIn{max L{k)] + 3m.

AX

To make AIC "<’ ccmpatahle with SC(k), we can even drop C, the correction

factor, and use

(5.10) AIC* (k)

-21n{max L(k)] + 3m,

As we mentioned hefore, stimulated by the appearance of the Akaike's
Information Criterion /AIC), Schwarz (1978) has recommended the model selection

criterion,

(5.11) SC(k} = -21almax (k)] + m(k)la(n),

where k=1,254..,X = number of component clusters, or types,
m = m{k)
+ . )
m(k) = <p + (<-1) + R+ . umber of parameters including the

mixture propartions when :xovariances
are equal,

3
—
~
"
A
©
t
A
L}
+
A
=
+
—
[}

number of parameters inciuding the
mixture proportions wnen covariances
are different between clusters, and




M = m(K)

for the standard mixture model.

Having defined these two well xnown model-selection criteria for the
standard normal mixture model, in the next section, Section 6, we apply these
two criteria to the famous Fisher iris data. [n doing so, we shall attempt to
improve Wolfe's and others' results without the worry of what the appropriate
significance level g should be in testing the hypothesis of different compo-
aent clusters in order to discover or identify and describe the clusters or

types in the mixture model.

6. Application of Standard Normal Mixture Model to Fisher Iris Data

In this section we shall apply the standard narmal mixture model to the
w#eil-known Fisher {1936) iris data. We shall give the numerical results from
the mixture model by performing diffarent analyses on the iris data by apply-
ing the model-selection criteria for differnt choices of k. We shall accomp-
lish this by using the mixture algorithm under two assumptions: common
covariance matrices between the component normals, and varying covariance
matrices in determining the actual number of types or species in the Fisher
iris data.

The iris data consist of four characteristics (p=4) for three species of

iris; the species are Iris setosa (S), Iris versicolor (Ve), and Iris

virginica (VYi), and the characteristics are sepal length, sepal width, petal
length, and petal width. Each group is represented by 50 plants, and hence
this data set is composed of 150 iris species in total.

This data set has bdeen gquita extensively studied in classification and

cluster analysis since it ~as published by Fisner (1936), and still today,

is deing used to test the practical utility of various classification and

JRESE N
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clustaring methods proposed by many investigators such as Friedman and Rubin
(1967), Kendall (1966), Solomon (1971), Mezzich and Solomon (1980}, and many
others, including the present author,

For each of the 150 plants we already know the group structure of the
iris species, namely K=3 groups or samples. Even though the two species, Iris

setosa and Iris versicolor were found growing in the same colony, and Iris

virginica was found growing in a different colony, Fisher reports in his
linear discriminant analysis the separation of [. setosa completely from

[. versicolor and I. virginica. Since then other investigators have shown

similar results in their studies such as the ones we mentioned above.

With this in mind, for our purposes, if we were presented with the 150
irises in an unclassified manner (say, before the three species were
established), then the mixture analysis using model-selection criteria
attempts to discover and describe the types of irises without using any
a priori classification information.

Using the NORMIX nrograms (i.e., normal mixture programs) of Wolfe

{13967), whicn are modified and extended by this author, on the Fisher iris

data, we ran normal mixtures with different covariance matrices hetween the

clusters {i.e., types), and normal mixtures with common covariance matrices.

in doth cases, we ran k=1,2,...,7 types and computed AIC*(k)'s and SC(%)'s for
identifying the best component cluster or clusters under the following

situations:

1. When the mixture algorithm initially partitions the data into squal
size jroups;

2, When the data initially reordereg to make the problem 1i¢“icult *or

tne mixture algorithm;
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3. When the results from k-means algorithm are used to initialize the
mixture algorithm to avoid the problem of local maxima of the like-
linood function;

4. When a special initialization scheme is used to initialize the
mixture algorithm which is proposed by this author; and finally

5. When a special initialization scheme is used on the reordered data to
start the mixture algorithm, again to avoid the problem of local

maxima of the likelihood function.

We present all our numerical results under each of the above situations

respectively, as follows.

6.1. When Data Initially Partitioned into Equal Size Groups

Ahen no special initialization is used, the mixture algorithm in the
first step of iteration sets the belonging probabilities equal to one. That
is, P(kl}i) = 1 when the individual i is from component (or group) k anc¢ zero
otherwise. This initiali1zation is equivalent to partitioning the observations
into equal size groups. Then the algorithm estimates the number of obser-
vations from the kth component in the second step. In the third and fourth
steps, the algorithm estimates the cluster means and the within cluster
variance-covariance matrices, respectively. In the fifth step, the deter-
minants and inverses of the variance-covariance matrices are computed for each
x and then the probability densities, the average densities, and the log like-
lihood function. This cycle is repeated until the maximum-likelihood
estimates of the parameters converge, and until all the individuals or data
units are assigned into their respective component clusters and no further

reallocation occurs.

-




Under this situation, we ran <=1, x=2, k=3, k=4, k=5, k=6, and k=7 :

components or types and computed AIC*(k)'s and SC(k)'s for identifying and

selecting the best component cluster or clusters. We obtained the following

results.
A
TABLE 6.1.1. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE |
IRIS DATA WHEN COVARIANCE MATRICES ARE DIFFERENT BETWEEN CLUSTERS ;
T a | ’ c d A
No. of Types| In[max L(k)] | No. of garameters l AIC* (k) l SC(k) :
K i , m | i
T ’ ’F
1 171. 448 14 | -300.896 -272.748 ¢
| | | .
2 ; 337.008 i 29 } -587.016 -528.,709* ¥
3 L371.177 % 44 3 -610. 354" -521.887*" A
! i | (3
4 | 385.342 59 | -504.684** | .476.057 1
' ! i | '
5 | 397.178 j 74 5 -572.356 | -423.567 i
6 436.148 | 89 g -605. 296 -426. 349
|
K=7 | 439.528 | 104 { -567.056 -357.950
} | |

Where p=4 Variables, n=150 Observations, and

a. From Iterative Maximum Likelihood ,[Estimates in Mixture Model
After Convergence Took Place when 36 [terations were used.

b m = kp+k-1+kRi%:ll = Number of Parameters.

c. AIC*(k) = -2In[max L(k)] + 3m.
d. SC(k) = -21n[max L(k)] + min(n). :

]
|
* First Minimum AIC* and SC. l

** Saecond Minimum AIC* and SC.
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TABLE 6.1.2. THE AIC*(k)‘s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS 3

No. o: Types | 1n[max L(k)]a No. of Parameters AIC*(k)c SC(k)d
m
1 171. 448 14 | -300.896 272748 <
2 254.915 19 -452.830 -414.629
r 3 295.009 24 | -518.018 -469.763 )
4 328. 314 29 -569.628*% | -511.321" 1
5 334,076 34 | -566.152 -497.791%* }?
6 339.142 39 : -561.284 -482.870 -
k=7 355. 353 44 j -578.706% | -490.176 |
i
1

Where p=4 Variables, n=150 Observations, and

d. From [terative Maximum Likelihood Estimates in Mixture Model
After Convergence Took Place when 36 Iterations were used.

b. m= kp+k-1+AEL%:ll = Number of Parameters.
c. AIC*(k) = -21n[max L(k)] + 3m.
d. SC(k) = -21n{max L(k)] + min(n).

* First Minimum AIC* and SC.

** Second Minimum AIC* and SC.

£xamining each table carefully, starting with Table 6.1.1 where the
covariance matrices are different between clusters (or types), we see that the
first minimum AIC* is wnen k=3 types, the second minimum AIC* is when k=4
ts/7es. That is, when <=3 types we have the best mixture submodel. This

inaicates that there are indeed three types of species in the iris data. On
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the other hand, the first minimum SC is when k=2 types, and the second minimum
SC is when k=3 types. Thus, according SC =2 types is the best mixture
submode! indicating the fact that SC favors lower-dimensional models when
compared with Akaike's AIC*. Nevertheless, the second minimum SC is when k=3
types where also AIC* achieves its first minimum. Hence, the mixture model nhas
recovered the known structure among the 150 iris plants and we are capable of
identifying it by using the minimum AIC* and the minimum SC procedures. For
tne three-types solution, by examining the confusion matrix of group member-
ship, we see further that the I. setosa (Type or Cluster 1) were completely
recovered, as [. virginica (Type or Cluster 3). However, five plants of

I. versicolor (Type or Cluster 2) were classified with Type 3 and therefore

these could be regarded as misclassified.

In Table 6.1.2 where the covariance matrices are considered to be equal
between clusters (or types), we see that the first minimum AIC* is when k=7
types, the second minimum AIC* is when k=4 types. On the other hand, SC favors
k=4 first, and then k=5 to be the second best mixture submndel. These results
are not surprising since the population covariance matrices of the three types
of irises are not equal to each other. Moreover, since mixture analysis
attempts to find maximum-likelihood estimates of the parameters, the best
solution for our purposes is the one with the greatest likelihood, or the
greatest log likelihood. And nence, if we compare In[max L{k)] of Table f.1.1
and Table 5.1.2, respectively, we see that we have the greatest log likelihoods
for each component clusters in Table 6.1.1, except when k=1 of course. Thus,

this suggests that we should use the resul%s of Table A.l1.1 wnere the

covariance matrices are different for the iris data.

P T




6.2.

when Data Initially Reordered

In this case, we made the problem intentionally harder for the mixture
algorithm through the reordering of the iris data sequentially. We chose first
three species from each group and sequentially reordered the data until all the
150 flowers were scrambled completely. Such reordering of the data makes the
algorithm start at different initial estimates of the parameters. The purpose
of doing this is to obtain satisfactory initial estimates of the parameters
which are essential if we need to avoid misleading solutions,

We ran again the NORMIX program assuming both different and equal
covariance matrices between the clusters (or types) for k=1, k=2, k=3, k=4,
k=5, k=6, and k=7 types. For each of the clustering alternatives, we computed
AIC*(k)'s and SC(k)'s to be able to identify the best type and consequently
determine the exact number of types. For these our results are shown in Tables

6.2.1 and 6,2.2.

TABLE 6.2.1. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS

DATA WHEN COVARIANCE MATRICES ARE DIFFERENT RETWEEN CLUSTERS

o of Types| 1n(max L(k)I® | No. of, Paraneters L aIcT ) © g sc (k)9
1 171.448 14 -300.896 } -272.748
2 254,235 29 -427.470 i -369. 162
3 | 361.859 44 -591.718" i -503, 251" 2
3 | 376,186 59 | -575.372" | _156,745%* 1
5 | 380,982 74 -539.964 L 391177 |
5 | 285101 39 | -223. 2824 f - 14,3374 i
<=7 ; 426,002 104 | -540.004 o .330.307
,

* First “inimum AIC* and SC.

** Second Minimum AIC* and SC.

# 11C* and SC Yalues Juring 5th Iteration,
th Ilteration,

Mixture Algorithm Halted at

Singular Variance-Covariance Matrix.
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TABLE 6.2.2. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. o: Types | Infmax L(k)I?| No. ofmgarameters ! AIC* (k)€ ! SC(k)d
1 171. 448 14 | -300.896 -272.446
2 191,137 19 -325.274* -287.072"
3 191.137 24 -310.274** | -262.018**
4 191,137 29 -295.274 -236.965
5 182.611 34 -263.222 -194.861
6 191.137 39 | -265.274 -186.859
K=7 191.136 44 % -250.272 -161.806

* First Minimum AIC* and SC.
** Second Minimum AIC* and SC.

#a,b, c, and d are as in Tables 6.1.1 and 6.1.2.

Now examining Tables 6.2.1 and 6.2.2, we see in Table 6.2.1 that the first
minimum AIC* and SC occur at k=3 types, the second minimum AIC™ and SC occur at
k=4 types. Thus, both criteria choose k=3 types as the best mixture submodel.

In Table 6.2.2, however, we see completely the oppoéite of the results in
Table 6.2.1. Here, the first minimum AIC* and SC both occur at k=2 types, and
the second minimum AIC* and SC occur at k=3 types. We note, however, that,
In[max L{k)], except k=1, has converged to the same value for k=2,3,...,7 types
even when we used 36 iterations. That is, In[max L(k)] for k=2,...,7 are all

stationary. Again, since mixture analysis attempts to find maximum-likelihood

astimates of the parameters, the best solution for our purposes is the one with
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the greatest likelihood, or the greatest log likelihood. Therefore, comparing
In{max L(k)] of Table 6.2.1 and 6.2.2, we see that In[max L(k)] are the greatest
for each component clusters in Table 6.2.1, except when k=1, This suggests
again that we should use the results of Table 6.2.1 where the covariance
matrices are different for the iris data. However, one should not be puzzled
with the noncovergence of In[max L(k)] in Table 6.2.2, since we are not always
guaranteed convergence in iterative procedures, nor are we guaranteed that the
Tocal optimum is always global. We show such a result to demonstrate that

unexpected things also might happen.

6.3. When Data Initialized by K-Means Algorithm

, . It is a well known fact among the users of cluster analysis techniques
that in the multivariate situation satisfactory or good initial estimates for
the parameters are almost essential to start the iterative clustering

algorithms to avoid misleading solutions., Specially, in the mixture analysis,

there may be many different solutions of the maximum likelihood equations.

Therefore, suitable initial values for the parameters are crucial when fitting

mixtures of multivariate normal distributions to data to avoid the problem of
local maxima of the likelihood function.

In the literature, Hartigan (1975, p. 124), Everitt (1981), and others,
suggest "k-means" algorithm to be appiied to data first, and then take the

resulting cluster centroids (or means), etc., as starting values for component

mean vectors, etc., in the maximum likelihood astimation algorithm, Following
their suggestions, we ran "k-means" algorithm by using the 3MNP ¥ -MEANS 3
PROCEZIURE and asked for k=1,2,...,7 clusters on the 150 iris plants, 'e %hen
<00k tne resulting cluster centroids for each x and used tnem as starting

values far component mean vectors in tne mixture analysis for k=1,2,...,7. !

We aobtained the following results,

it 1-----u--iII....-II.......llI.i.‘.'I'."...l.'......lllIl.l."




TABLE 6.3.1.

THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
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NDATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. 0: Types | 1n[max L(k)J® | No. of Parameters ATC* (k)¢ sc(k)“
m

1 171.448 14 -300.896 -272.748

2 337.008 29 -587.016** -528. 709"

3 358.709 44 -585.418"* -496,950**

4 314.804% 59 -452.608# -333,981%

5 412,012 74 -602,024* -453,237

6 393.591# 89 -520.182#% -341.236% é
K=7 391.616# 104 4712324 -262.126% ”

TABLE 6.3.2.

THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. o: Types | In[max L(k)J? | MNo. of Parameters ATC* (k)€ SC(k)d
m
1 171.448 14 -300, 896 -272.748
2 254,915 19 -452,830 -414.629
3 295.001 24 -518.002 -469.763
4 328.314 29 -569.628"" -511.320"

5 334,065 34 -566.130 -497,768** T
5 330119 | 39 -561.238 -482.824 ?
<7 . 352.781 i 14 -573,562" -485. 095 EI
* Firgt Minimum AIC* and SC. ?
** Second Minimum AIC* and SC. |

* 11C" and SC vYalues Juring 5th Iteration. Mixture Algorithm Halted at

3tn taration, Singular Variance-Cavariance Matrix.

1, Y, ¢, and 4 are as in Tables A,1.1 and A.1.2.
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Looking at Table 6.3.1 and 6.3.2, we see in Table 5.3.1 <nat the first
minimum AIC* occurs at k=5 types and the first minimum SC occurs at k=2 *ypes.
The second minimum AIC* occurs at k=2 types and at k=3 since the values are
significantly close to each other. Also, the second minimum SC occurs at «=3
types. For k=4, k=6, and k=7 types, the mixture algorithm haltad at Ath
iteration due to singular variance-covariance matrix.

In Table 6.3.2, we see that the first minimum AIC* occurs at k=7 types
and the second minimum AIC* occurs at k=4 types. On the other hand, the first
minimum SC occurs at k=4 types and the second minimum SC occurs at k=5 types.
We further note here that these results are identical to those obtained in
Table 6.1.2, when data initially partitioned into equal size groups by the
algorithm.

Even tHOUgh'uSing "k-means" or other clustering techniques as a tool of
initializing clusters appear to be the most obvious way to obtain suitahle
initial values for the parameters in the mixture analysis, but such an
approach in general may not be the best as we shall see in the next two sec-

tions, that is, in Section 6.4 and 6.5, respectively.

6.4, When Data Initialized by Special Initjalization Scheme

In Section 6.3, we gave the results nf the mixture analysis when we
initialized the mixture algorithm by using the results of "k-means" algorithm
as our inmputs or starting values for component mean vectors. As we mentioned,
such an approach in general may not be the best and cneap. Therefore, in this
section, we shall propose a simple and less expensive initialization scheme
which nhas intuitive appeal and by-and-larqge pniiosophically is acceptanie.

The proposed initialization scheme is as follows:

!

(1) We first compute %he maximum 3and the minimum of the variiables across

- oy

;i,.
$
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all data. We denote this by fmax and Zmin' let R = Xmax - Zmin be |

the range of the data on the variable vector X,

(i1) Next, we compute the average of X

Xnin and Kmax‘ We denote this by

X11 = Kpin * Kpax)/2- To initialize k=1 component mixture, we use

511 as the component mean vector in the mixture analysis. ‘

(X

(iii) To initialize k=2 component mixtures, we compute Xmin

« X, 02,

221 7 11
and 522 = (511 + Emax)/z to be entered as the component mean vectors

in the mixture analysis.

(iv) To initialize k=3 component mixtures, we compute 531 = (Kmin + 521

532 = (Xél +‘X22)/2, and 753 2 (Xéz + §max)/2 to be entered as the

/2,

component mean vectors in the mixture analysis, and so on.

Thus, we continue in this fashion until we generate all the initial mean
vectors sequentially, and until we reach the larger hypothesized number of
companent clusters K. [n doing this, we remain in the range of the data on the
‘; variable vector X. Such an initialization scheme sets up cluster centers
regularly spaced at intervals on each variable which is less expensive and easy
to program. Of course, we can also consider outer points (i.e., the points
outside of the data range) and use the above initialization scheme to initial-
ize the mixture and other clustering algorithms, which we did 1ot pursue it
nere,

Our results obtained from this special initialization scheme are shown in

Tablas 6.4.1 and 5.4.2.
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TABLE 6.4.1. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS r
DATA WHEN COVARIANCE MATRICES ARE DIFFERENT BETWEEN CLUSTERS :

No. o: Types | Infmax L(k)]* | No. obearameters i AIC* (k)€ SC(k)d
m L
1 171. 448 14 -300.896 -272.748
2 337.008 29 -587.016™ | -528.709"
3 371.177 44 -610.234" -521.887""
4 381. 395 59 -585,790 -467.163
5 405. 493 74 -588.986 -440. 200 ;
6 426. 428 89 -585.856 -406.911 '
K=7 433.193 104 -554, 386 | -345.279

TABLE 6.4.2. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. o: Types | In[max L(k)]* | No. o;bParameters | A;c*(k)c b oscx)d
1 171. 448 14 -300.896 -272.748
2 254.915 19 | 452830 | -414.629
3 295.009 24 ' 518,018 -469.763
4 315.296 29 -543,592 i -485.284 Y
5 333.998 34 | -565.996"" g -197.535
6 341, 242 39 . .s65.4dg | -487.070
ka7 385. 339 44 | -s78.678" E -490.210%* 3

* Fipst Minimum AIC* and SC

** Second Minimum AIC* and SC

a, b, ¢, and d are as in Tables 6.1.1 and 6.1.2.

P
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Ixamining each table carefully, starting with Tadle 5.4,1 where the
covariance matrices are different between clusters {or types), we see that the
first minimum AIC® is when k=3 types, the second minimum AIC* is when k=2
types. That is, when k=3 types we have the best mixture submodel. On the
other hand, the first minimum SC occurs at k=2 types, and the second minimum SC
occurs at <=3 types. Thus, according to SC k=2 types is the hest mixture sub-
model. Comparing these results with the results of mixture analysis obtained
- from initializing the mixture algorithm by using "k-means" results given in
Table 6.3.1, we clearly see that our initialization scheme gives better results
than what is suggested in the literature,

In Table 6.4.2 where the covariance matrices are considered to he equal
hetween clustars (or types), we see that the first minimum AIC* occurs at k=7
types and the second minimum AIC* occurs at k=5 types. SC favors the same
mixture submodels but in the reversed order as compared to AIC*. Again these
results are not surprising since the population covariance matrices of the
three types of irises are not equal to each other, and In[max L(k)] values
are greatest for each component cluster in Table 6.4.1 as compared to the

Tn[max L(k)] values given in Table 6.4.2, except when k=1,

6.5. 4When Special Initialization Scheme is '!sed nn Reordered Data

Finally, when we use the special initialization scheme presented in Section
5.4 on the reordered data to start the mixture algorithm to avoid the problem

of local maxima of the likelihood function, we obtained the following resul<s.
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THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. o: Types | Infmax L(k)I® | No. ofmgarameters ALC* (k)€ SC(k)d
1 171. 448 14 -300.896 -272.748
2 257.235 29 -427.470 -369.162
3 358.219 44 -584, 438* -495.970"
4 374. 422 59 -571.884** -453,217*%
5 220.659# 74 -219. 318# - 70.532%
6 218, 458# 89 ; -169.916# 9.029#
k=7 226. 3954 104 g -140. 790# - 63.314%
‘

TABLE 6.5.2.

~T

THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. o: Types | 1n[max L(k)]a No. of parameters l AIC*(k)c SC(k)d
m
1 171. 448 14 -300.896 -272.748
2 191.135 19 -325.270 -287.068
3 295.009 24 -518.018" |  -469.763"
4 287.889 29 -488.778** -430. 470™"
5 171.531# 34 -241.062% -172.701#%
6 } 171.559# ! 39 % -226.118# | -147,704%
K=7 i 171.576# ; 44 | -2li.152¢ é -122.685%
' % ;

* First Minimum AIC* and SC.

** Second Minimum AIC* and SC.

# AIC" and SC Values Juring 5th Iteration. Mixture Algorithm Halted at

étn [taration.

Singular Variance-Covariance Matrix.

a, b, ¢, and d are as in Tables 6.1.1 and 6.1.2.

[ U
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Looking at Tables 6.5.1 and 6.5.2, we see that under both different and
equal covariance matrices between clusters (or types), the first minimum AIC*
and SC occur at k=3 types. The second minimum AIC* and SC occur at k=4 types.
Thus, in this case according to AIC* and SC k=3 types is the best mixture sub-
model. Comparing the values of AIC* and SC for k=2,3, and 4 types in Table
6.5.1 and 6.5.2, respectively, we can see that the AIC* and SC values in Table
6.5.2 are larger than the AIC* and SC values in Table 6.5.1, suggesting to us
that when we are clustering iris data, and in general, we should use different
covariance matrices rather than using equal covariance matrices. Thus, model-
selection criteria can also be used to decide whether or not to assume a common
covariance matrix.

From the results in Table 6.5.1 and 6.5.2, we further note that it
suffices to fit K=5 hypothesized number of mixtures to Fisher iris data rather

than fitting K=7 multivariate normal mixtures.

7. Conclusions and Discussion

From our numerical results in Section 6, we see that model-selection
criteria can indeed be used to estimate k, the number of component clusters (or
types) in the mixture model, when we do not know the group structure of the
gata a priori.

Summarizing the results on the number of t7--s the minimum AIC™ and SC

selected each mixture submodel across all the tables given in Section 6, we

obtain the following frequencies.
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TABLE 7.1, SUMMARY OF THE RFSULTS OF AIC*(k)'s AND SC(k)'s FOR STANDARD
MIXTURE MOPEL FOR THE RIS DATA

No. of Types E Number of Times Number of Times
k AIC*(k) Selected SC(k) Selected

1 0 0

2 2 5

3 4 2

4 0 2

5 1 1

6 0 0

K=7 3 0

Looking at Table 7.1, we see that AIC* identifies the correct group
structure (i.e., k=3 types) in the Fisher iris data four times as compared to
SC which identifies the correct structure twice. AIC* chooses k=2 types twice,
SC chooses k=2 types five times indicating that SC favors lower-dimensional
models as compared to AIC*., The case where k=7 types was chosen three times hy
AIC* corresponds to the results where the covariance matrices between clusters
were assumed to be equal instead of different. In these applications, however,
these criteria often agree in identifying the correct model,

In the literature, objections have been raised that minimizing the AIC*
does not produce an asymptotically consistent estimate of the model. For this,
we shall refer the reader to Schwarz (1978), 3hansali and Downham (1977), B3ut
also mentioned by Larimore (1983), no strong reasons have heen offered for why
such consistency would be desirable or would give sensible results generally,

since in most applicaticns such as the one we prasented in this paper, we can

vary the class of altarnative models hut not the number of observations, A4s

as

R Al A IR




-38-

Akaixe {1981) states: ". . . This inconsistency of order detarmination does 7ot
necessarily mean a serious problem, as expected deviation of the fitted model

in terms of entrnpy decreases to its minimum possible value as the data length
tends to infinity. This means that the procedure is inconsistent in terms of

our basic criterion. I[f AIC is replaced by

-2 In{maximized 1ikelihood)

+f(n) (number of free parameters),

where f(n) is a function which increases without bound, yet such that f(n)/n = 0,
as n tends to infinity, then the corresponding MAICE produces a consistent
estimate of the order when this does exist.”

Therefore, consistency for a given class of models within a fixaed numher of
observations is not a problem for a good model-selection criterion. Specially
in ¢classification and clustering problems we do not have to worry about con-
sistency or the order of a model.

For example, from Table 7,1, we see that Schwarz' Critarion {SC) wnich is
a consistent modified version of AIC, does not necessarily pick up the correct
group structure more often than AIC* in the Fisher iris data even wnen it is
known a priori that there are three types of species of irises. So the
juestion is: "What kinds of penalty should the decision maker pay wnile
rying to expect consistency for the model wnen indeed no consistency problem
exists in a finite sample situation?”

Thus, it seems that to arqgue consistency when data contains a finite
sanple size is fruitless. The performances of these model-saelactinn criteria
most often depend strongly an the class of models, on the nature of the prior

speci“ication corraesponding to wnicn thase criteria ara derived, and of course,

. T
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on the type of data sets they are applied,

Thus, in concluding, we see that our numerical results clearly demon-
strate the potential of both Akaike's Information Criterion (AIC), and
Schwarz' Criterion (SC) in identifying the best clustering alternative or
alternatives, and estimating the number of component clusters present in the
mixture model. These model-selection criteria are defined without any
reference to a particular null hypothesis and are measures of the badness of
the model which are free from the ambiguities inherent in the application of

conventional procedures.
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